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ABSTRACT

The prevalence of skin melanoma is rapidly increasing as well
as the recorded death cases of its patients. Automatic im-
age segmentation tools play an important role in providing
standardized computer-assisted analysis for skin melanoma
patients. Current state-of-the-art segmentation methods are
based on fully convolutional neural networks, which utilize
an encoder-decoder approach. However, these methods pro-
duce coarse segmentation masks due to the loss of location
information during the encoding layers. Inspired by Pyramid
Scene Parsing Network (PSP-Net), we propose an encoder-
decoder model that utilizes pyramid pooling modules in the
deep skip connections which aggregate the global context and
compensate for the lost spatial information. We trained and
validated our approach using ISIC 2018: Skin Lesion Anal-
ysis Towards Melanoma Detection grand challenge dataset.
Our approach showed a validation accuracy with a Jaccard in-
dex of 0.837, which outperforms U-Net. We believe that with
this reported reliable accuracy, this method can be introduced
for clinical practice.

Index Terms— skin lesion, segmentation, melanoma,
convolutional neural networks, pyramid pooling modules

1. INTRODUCTION

Skin cancer is by far the most common of all cancers. Skin
melanoma incidents represent about 1% of skin cancers but
causes a large majority of skin cancer deaths. In 2018, it is
estimated that more than 90,000 new incidents of melanoma
will be diagnosed in the United States alone, resulting in
10,000 deaths [1]. Consequently, the early diagnosis of
melanoma greatly increases the prevalence of recovery. The
five-year survival rate for early stage melanoma exceeds 95%
[2]. These statistics promote the importance of early diag-
nosis and identification of skin melanoma lesions. One of
the essential steps in computerized analysis of dermoscopic
images is automatic skin lesion segmentation.

A number of classical image processing techniques like
thresholding, edge based, or region-based methods have been

traditionally used for the sake of skin lesion segmentation [3].
However, the existence of different sources of artifacts in im-
ages was a serious limitation to the classical techniques. For
feature-based techniques, low-level and handcrafted features
were not able to accurately segment skin lesions [4].

In the recent years, alongside with the advancements in
the computational power of the graphical processing units
(GPUs), Convolutional Neural Networks (CNNs) [5] have
emerged as one of the most powerful tools in image process-
ing. CNN models have shown a promising performance in
multiple domains including medical image analysis [6]. Long
et al. [7] introduced a fully convolutional network (FCN) for
segmentation task where the input image is encoded using
sequence of convolutions and pooling operators producing
deep feature maps, and then decoded by a single deconvolu-
tional upsampling layer to produce output feature maps with
the original size. Despite the significant contribution over the
classical machine learning and image processing methods,
the FCN design had a negative effect on the output probabil-
ity maps as the location information is distorted due to the
sequential pooling operations producing coarse segmentation
masks.

To alleviate the deficiencies of FCN, Badrinarayanan et
al. [8] designed a trainable decoder with multiple decon-
volutional layers operating on gradually upsampled feature
maps. Ronneberger et al. [6] introduced skip connections to
preserve important location information by concatenating the
features from the contracting (encoding) path with the cor-
responding features in the expanding (decoding) path. PSP-
Net [9] proposed a pyramid pooling module to aggregate the
global context by using parallel pooling layers with differ-
ently sized kernels. Consequently, that provided additional
contextual information preserved along the sequential convo-
lution and pooling layers.

In skin lesion segmentation context, Yuan et al. [10] uti-
lized the conventional encoder-decoder architecture with a
novel Jaccard-index-based loss function to handle the class
imbalance in the dermoscopic images. Their FCN model
has shown an improvement in the segmentation accuracy on
ISIC 2016 dataset for skin lesion analysis [11]. However,
their study suffered from several limitations such as failing
to achieve reasonable accuracy on some images that have
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Fig. 1: An illustration of the proposed architecture. Each
blue box represents a multi-channel feature map. Number of
channels is shown below each box. White boxes represent
copied feature maps. The arrows denote the different opera-
tions. PPM: Pyramid Pooling Module.

low contrast between the lesion and the skin. Xue et al.
[12] explored the use of adversarial learning in the lesion
segmentation task.

Inspired by PSP-Net, we propose an adjusted encoder-
decoder architecture to overcome the coarse nature of the out-
put segmentation map. Our main idea is to embed the pyramid
pooling modules (PPMs) to the skip connections in the deeper
convolutional layers. We show that such architecture aggre-
gates the location information from the low convolutional lay-
ers, to alleviate the problem of spatial information loss. Our
experiments on ”ISIC 2018 Skin Lesion Analysis Towards
Melanoma Detection” dataset [11] corroborate our hypothe-
sis that this approach refines the output predicted masks when
compared to the current state-of-the-art lesion segmentation
methods.

2. METHODS

Network Architecture Our proposed network architecture
consists of an encoding path and a decoding path as shown in
Fig. 1. For the encoding path, we use VGG11 [13] network
without the fully connected layers, with an additional batch
normalization layer after every convolution. In the decoding
path, the features map is upsampled using transposed convo-
lutional layers which double the spatial resolution and reduces
the number of channels by half. Additionally, each upsampled
map is concatenated with the corresponding feature map from
the encoding path through skip connections, then followed by
a 3x3 dilated convolution, batch normalization, and ReLU. In
all convolutional layers, we use padded convolutions in order
to prevent the loss of borders.

As shown in Fig. 1, the two upper skip connections just
concatenate the features from the encoding path with those
in the decoding path to preserve the spatial information from

Fig. 2: An illustration of the Pyramid Pooling Module (PPM).

the encoding path. However, the two lower skip connections
projects the encoded activation maps to a Pyramid Pooling
Module (PPM) [9] before concatenation. PPM covers differ-
ent parts of the feature map through different pooling oper-
ations (see Fig. 2). An extra PPM block is used as a bottle
neck between the encoding and the decoding path.

There is an output layer after the encoded path which per-
forms a pixel-wise classification. The output layer is a 1x1
convolutional layer with a sigmoid activation function. The
entire image is projected to a map of the same size, where
each element represents the probability of its correspondence
to the foreground (the lesion).

The output probability map is subjected to three succes-
sive post processing steps starting with thresholding the prob-
ability map at 0.5, then selecting the largest connected com-
ponent and finally filling the holes of this component produc-
ing the final mask.

Training Our model was implemented using PyTorch deep
learning framework. Adam optimizer was used for neural net-
work optimization. Dynamic learning rate was used and ini-
tialized by 5x10-5 then multiplied by 10-1 every 30 training
epochs. The number of epochs was initially set to 200 epochs.
However, in our experiments the network converged to the
best validation accuracy in less than 100 epochs thanks to the
pretrained weights. Additionally, the training batch size was
set to 16 images. We augmented the training images using se-
ries of geometric transformations (horizontal flipping, vertical
flipping, rotation, and zooming) to reduce model overfitting.
We used Generalized Dice Loss (GDL) [14] as a loss function,
which is a modified formula of dice score coefficient (DSC).
Unlike DSC, GDL is differentiable and can be used as a loss
function in case of imbalanced dataset, as an alternative for
the widely used Cross-entropy loss. GDL takes the form:

GDL = 1−
2
∑

n rnpn∑
n rn +

∑
n pn

(1)

Where: r is the reference ground truth segmentation with
pixel values rn, and p is the predicted probabilities from the
CNN with pixel values pn.



3. EXPERIMENTS AND RESULTS

Our data was extracted from the ISIC 2018: Skin Lesion
Analysis Towards Melanoma Detection grand challenge
datasets [11]. The training set consists of 2594 RGB der-
moscopic images with spatial resolutions ranging from 576
× 768 to 6748 × 4499. ISIC 2018 Validation and test data
ground truth have not yet been released by the time of this pa-
per submission. Thus, we divided the training data into 80%
training (2076 images) and 20% validation set (518 images).
The validation set was used to evaluate the performance of
our approach. In order to guarantee the robustness of the
model against different parts of the available data, five-fold
cross-validation was used. We resized all the images to 192
× 256. However, the reported results were calculated after
resampling the output masks to the original sizes. Fig. 3
shows the cross-validation results of our model. We compare
our method with U-Net as a baseline against one random
validation fold (518 images) of the dataset. Tables 1 & 2
summarize the results of our method compared to U-Net,
other approaches on ISIC 2017 dataset (2000 training im-
ages and 600 test images) and the results on the official test
set (1000 images). We do not include results on ISIC 2016
dataset (900 training images and 375 test images) due to its
relatively smaller number of test images. Using a Geforce
1080Ti Nvidia GPU, our method is able to segment around
10 images per second.

4. DISCUSSION

Automatic lesion segmentation is still a challenging task due
to the lack of distinctive lesion boundaries to adjacent skin, as
well as the existence of various artifacts. In this work, we in-
troduced an encoder-decoder like architecture equipped with
PPMs for automatic skin lesion segmentation.

Our model has shown superior, and stable results on the
five-fold cross-validation experiments. Compared to the pre-
vious approaches on smaller datasets, our method introduced

Fig. 3: Five-fold cross-validation results of the proposed
model on ISIC 2018 dataset.

Table 1: Results of our method against other methods evalu-
ated on the local validation set. All values are in percentages.
JA: Jaccard; DC: dice; SN: sensitivity; and SP: specificity.

Method Data JA DC SN SP
Xue et al.

[12] ISIC
2017

78.5 86.7 - -

Yuan et al.
[10] 76.5 84.9 82.5 97.5

U-Net [6] ISIC
2018

82.6 89.5 91.1 96.8
Proposed
Method 83.7 90.3 90.2 97.4

Table 2: Results of our method against other methods evalu-
ated on the official ISIC 2018 test set. The official evaluation
metric was Jaccard thresholded at 65%. All values are in per-
centages.

Method Thresholded Jaccard
Bissoto et al. [15] 72.8
Hardie et al. [4] 66.3

Proposed Method 73.8

a significant improvement in the segmentation accuracy. ISIC
2018 dataset is the latest publicly available dataset, that ex-
tends the previous ISIC 2017 and ISIC 2016 datasets with
significantly more training and testing examples. Our model
outperformed U-Net on our local validation set, we believe
that this improvement is due to the PPMs role in preserving
the spatial information along the encoding-decoding pro-
cess by extracting additional contextual information in the
deeper skip connections. Additionally, our method had a
higher accuracy when compared to other published methods
on the official test set of ISIC 2018 skin lesion analysis to-
wards melanoma detection challenge. Bissoto et al. adopted
the conventional U-Net architecture for their submission,
while Hardie et al. used Bayesian classifier with handcrafted
features and SVM regression for segmentation threshold
selection. The difference between our scores on the local
validation set and on the official test set is due to the 65%
thresholded Jaccard metric used in the test set evaluation.
Our model does not rely on heavy augmentations or ensem-
bling that would increase the prediction time. Fig. 4(a,b,c
and d) shows success samples of the proposed method. There
are entries with higher scores on the official leaderboard of
ISIC challenge. However, there are no official presentations
for their used methods.

Despite the superior performance in most of the cases, the
model needs improvement to handle some failure cases. In
Fig. 4(e,f), we can notice the difficulty of differentiating be-
tween the lesion and skin areas even for experienced raters,
due to the very low contrast between the two classes. One
way to further improve the segmentation performance is to
use other post-processing techniques such as conditional ran-
dom field and to combine its parameters in the network train-
ing process.



(a) (b) (c)

(d) (e) (f)
Fig. 4: a, b, c and d: Success samples of our method. e and f:
Failure samples of our method. Ground truth label is shown
in black contour and the output predicted mask is in yellow.

5. CONCLUSIONS

In this work, we presented a fully automatic algorithm based
on CNNs for skin lesion segmentation from dermoscopic im-
ages. We proposed the combination of encoder-decoder ar-
chitectures with the pyramid pooling modules. Our method
does not require any preprocessing or gray-scale conversion.
According to the reported results, the method has shown its
robustness against other methods and various image artifacts.
We believe that this model can generalize well by showing re-
liable performance on other medical segmentation problems.
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