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Abstract. To automate the process of segmenting an anatomy of inter-
est, we can learn a model from previously annotated data. The learning-
based approach uses annotations to train a model that tries to emulate
the expert labeling on a new data set. While tremendous progress has
been made using such approaches, labeling of medical images remains a
time-consuming and expensive task. In this paper, we evaluate the util-
ity of extreme points in learning to segment. Specifically, we propose a
novel approach to compute a confidence map from extreme points that
quantitatively encodes the priors derived from extreme points. We use
the confidence map as a cue to train a deep neural network based on
ResNet-101 and PSP module to develop a class-agnostic segmentation
model that outperforms state-of-the-art method that employs extreme
points as a cue. Further, we evaluate a realistic use-case by using our
model to generate training data for supervised learning (U-Net) and ob-
served that U-Net performs comparably when trained with either the
generated data or the ground truth data. These findings suggest that
models trained using cues can be used to generate reliable training data.

1 Introduction

Deep neural networks have enabled tremendous progress in medical image seg-
mentation. This progress has been greatly enabled by the large quantity of an-
notated data. Supervised techniques trained with large annotated data, have
accomplished outstanding results on many segmentation tasks. However, the
annotations need to cover the inter- and intra-patient variability, tissue hetero-
geneity, as well as lack of consistency between imaging scanners, operators, and
annotators. As a result, image labeling is slow, expensive, and subject to avail-
ability of annotation experts (clinicians), which varies widely across the world.

To address this issue, techniques that can employ cues such as image label,
scribbles, bounding box, and more recently, extreme points, (fig. 1) have been
used to enable weakly supervised training with results that are comparable to
those obtained using ground truth pixel-level segmentation [1,5,6,7,10]. Learnt
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Fig. 1. (a) Extreme points (‘x’) and bounding box(red) shown on a given segmentation
S(x) (1), which was used to compute the confidence map (CM) f(E, I(x) (4) as shown.
The CM produces iso-contours with negative curvature, this is desired as explained in
section 2.1. (3) shows iso-contours overlaid on the image, where boundary of segmented
region has been shown in blue and user-clicked extreme points as ‘x’ markers. (b) For
inference, a confidence map computed using extreme points is input to the model.

models that produce pixel-level segmentation from user-provided cues can then
be used to significantly accelerate the annotation process. This approach has
the advantage of exploiting existing annotations as a prior knowledge to enable
the annotation of a new related data set. In this paper, we evaluate the utility
of extreme points as a cue for medical image segmentation. Extreme points can
be labeled more quickly than bounding boxes (∼7.2 seconds vs ∼34.5 seconds),
as shown by a recent study [6], and implicitly provide more information to the
learning models as they lie on the object of interest.

We explore a novel algorithm to encode information from extreme points and
generate a confidence map to guide the neural networks in understanding where
the object lies within the extremities defined by the extreme points. The training
data is augmented with confidence map to train a model that produces accurate
segmentation, using confidence map and image as input. Further, we present an
algorithm for fast computation of distance of points from a line segment that
allows us to generate confidence maps during training and keeps the memory
footprint low. We tested our approach against the state-of-the-art method in
employing extreme points as a cue [5] under identical and unbiased settings
and found that our approach improves the segmentation performance for all
organ categories in the multi-class SegTHOR data set [12]. We also evaluated
the algorithm under a use-case scenario (labeling a new data set) and found that
supervised training using segmentation produced by our approach performs well
compared to when the ground truth segmentation were used for training.

2 Methods

2.1 Problem Formulation

Given an image I(x) ∈ Ω;x ∈ R2 and the four extreme points E = x1, x2, x3, x4;
xi ∈ R2, we aim to compute a segmentation S(x) of the image, such that S :



Ω 7→ {0, 1}. This is accomplished using a segmentation map ψ : Ω 7→ Ω. In

a supervised learning setting, an approximate map (ψ̂) is learnt using a set of
training pairs {(I(x), S(x))i; i ∈ [1, N ]}, with cardinality N . In our approach, we

propose to learn (ψ̂) using an augmented training set {(f(E, x), I(x), S(x))i},
where f(E, x) : Ω 7→ Ω is a function that assigns a confidence score to every

point in the image domain. Our objective is to develop a class-agnostic (ψ̂) that
can segment a region-of-interest using the points in E as a cue.

To accomplish this, we propose to exploit the following cues: (i) The extreme
points form line segments x1x2 and x3x4 respectively that have a point of inter-
section, denoted as c, (ii) x1x2, x3x4, and c are likely to lie on region-of-interest
(RoI), (iii) Points in Ω away from c, x1x2 or x3x4 are less likely to lie on RoI, (iv)
Points lying on x1x2 or x3x4 are likely to lie on the RoI. We formulate f(E, x)
to take into account this prior information while assigning a RoI-membership
confidence score to each point in Ω.

Before explaining our generalized formulation for f(E, x), we consider a sim-
pler case where two assumptions are made: (i)x1x2 ⊥ x3x4, (ii) c bisects x1x2,
and x1x2. In this scenario, assuming that the lengths of x1x2 and x3x4 can
be used to approximate the measure of spread of the RoI (variance along x1x2
and x3x4), the following formulae allow us to incorporate the priors with one
exception (explained ahead):

d1(x) = min� {R−1(x− c)Λ− 1
2 }, d2(x) = {(x− c)TS−1(x− c)}

1
2 (1)

d3(x) =

{
1 if d2(x) 6 τ

0 if d2(x) > τ
, f(E, x) =

d3(x)

1 + d1(x)d2(x)
(2)

In the equations above, min� is an element-wise minimum taken over the result-
ing vector, S is the covariance matrix of the data (foreground pixels in the S(x)),
and R and Λ are obtained by decomposing S as: S = RΛRT , where R represents
the rotation matrix that rotates the standard axes into alignment with x1x2 and
x3x4, Λ is the diagonalized covariance matrix, and τ is a threshold. In equation
(1), d1(x) measures an equivalent of Chebyshev distance, and d2(x) measures the
Mahalonobis distance in the coordinate frame of x1x2 and x3x4. Fig. 1 shows
d1(x), d2(x), d3(x), and z(x). This formulation places an equal weight along the
line ←−→x1x2, which is a departure from the priors.

To overcome this limitation, we use the following formulae:

dx1x2
(x) =

dist(x, x1x2)

σx1x2

, dx3x4
(x) =

dist(x, x3x4)

σx3x4

(3)

d̂1(x) = min{dx1x2(x), dx3x4(x)}, d̂2(x) = {dx1x2(x)2 + dx3x4(x)2}
1
2 (4)

f(E, x) =
1

1 + d̂1(x)d̂2(x)
(5)



where dist(x, x1x2) is the distance of point x from line segment x1x2 and σx1x2

approximates the variance along x1x2. Equation (1) is a special case of eq. (4),
when x1 and x2 are at ±∞, x3 and x4 are at ±∞, and x1x2 ⊥ x3x4. By including
f(E, x) with I(x) and S(x) we create an augmented data-set that is used for

computing (ψ̂).

3 Implementation

3.1 Model and Data Set

We use a deep neural network with ResNet-101 architecture [3] to approximate

(ψ̂), with a few changes. The fully-connected layers and the final two max-
pool layers at the end of the ResNet-101 architecture are removed and atrous
convolution is added in the final two layers. Lastly, a Pyramid Scene Parsing
(PSP) [13] module is incorporated at the last stage to introduce global context.
To experiment with medical images where multiple organs have been annotated,
we chose SegTHOR data set [12]. SegTHOR data set comprises annotated CT
images of heart, aorta, trachea and esophagus. The soft tissue in heart, aorta and
esophagus have a closely matching dynamic range in Hounsfield Units(HU) and
therefore present challenging conditions for testing segmentation performance.

3.2 Data Pre-processing and Model Setting

SegTHOR comprises CT scans of 40 patients, acquired with 0.9–1.37mm in-plane
(512× 512 field-of-view) and 2–3.7mm out-of-plane resolution resulting in 150–
284 slices per patient. Heart, trachea, esophagus, and aorta were annotated in a
total of 7390 slices. To create our training data, 4 extreme points were deduced
for each organ in all annotated slices using ground truth segmentation. The input
to the neural network was a resized crop of the anatomy with dimensions 512×
512. To create the input to the neural network, a bounding box of dimensions
w × h was calculated using the extreme points. Next, using b = max(w, h),
we calculated a zoom factor z, such that z = bm/b, where bm is a random
number in [350,400]. This approach of calculating z ensures that approximately
45–60% pixels seen by the network belong to the anatomy of interest. Images
were windowed (-200, 250) and intensity normalized before input to the network.

We used the implementation of ResNet-101 and PSP module provided by [2]
and [5]. The network was initialized using pre-trained weights for a 4-channel
version provided by [5]. We fine-tuned the network using a learning rate of 1e-7,
batch size=14, Adam optimizer [4] (β1 = 0.90, β2 = 0.99), L2-regularization
(α=5e-4) and loss function set to weighted cross entropy. Data augmentation in
the form of random scaling (0.9–1.1), rotation (−30◦ to +30◦), and horizontal
flip was used. Data was split at patient-level into 60/20/20 splits for training,
validation, and test respectively. Training loop was executed for 100 epochs, and
model selection was done by evaluating validation set performance. To report
results, the best model was tested on test set only once.



3.3 Confidence Map (f(E, x))

Computing f(E, x) requires evaluating distance of each point in Ω from the line
segments x1x2 and x3x4. This is non-trivial if Ω is large. A time-efficient solution
was obtained by implementing calculation of distance from line segments for all
points in Ω as follows (Fig. 2):

Algorithm 1 Compute distance of points in image from line segment (Dx1x2)

1: Calculate x−, x+, and y−, y+ as the extent of image size
2: Create 2D arrays X and Y as: X, Y ← meshgrid(x−, x+, y−, y+)
3: X = X− c; Y = Y − c
4: x1 = x1 − c; x2 = x2 − c
5: Calculate unit vector along x1x2 as: cos(θ)̂i+ sin(θ)ĵ

6: Xrot ← Xcos(θ)−Ysin(θ); Yrot ← Xsin(θ) + Ycos(θ)

7: xrot1i ← x1icos(θ)− x1jsin(θ); xrot1j ← 0; xrot1 lies along 1̂i+ 0ĵ

8: xrot1 = (xrot1i , 0); similarly calculate xrot2

9: Dx1 =
√

(Xrot − xrot1i )2 + (Yrot)2; similarly calculate Dx2

10: Dp =
∣∣Yrot

∣∣
11: Mx1 = Xrot > xrot1i ; Mx2 = Xrot < xrot2i ; Mp = ¬Mx1 ∧ ¬Mx2

12: Dx1x2 = Mx1Dx1 + Mx2Dx2 + MpDp

13: MR = Xrot > 0; ML = Xrot ≤ 0 # Right and left mask
14: σL =

∣∣xrot1i

∣∣ ; σR =
∣∣xrot2i

∣∣ # Approximation to right and left variance
15: Σ = σRMR + σLML

16: Dx1x2 = Dx1x2/Σ

Above, meshgrid() is a computer program, boldface letters are 2D arrays,
rot refers to ‘rotated’, and all M’s are 2D boolean arrays. This algorithm can
be implemented without using any loops in Python and can be used to generate
confidence maps during training itself. On a CPU equipped with 2.2 GHz Intel
Xeon 5120 processor, it took 88 milliseconds to compute Dx1x2

for an image size
512× 512. Fig. 2 helps explain the algorithm. The confidence map f(E, x) was
incorporated into the input as an extra channel passed to the neural network.

4 Results

4.1 Our Approach and Baseline

In testing the performance of our approach, our objective was to evaluate how to
best encode information from the 4 extreme points for class-agnostic segmenta-
tion. We evaluated our model’s performance on unseen data by evaluating mean
Dice overlap score on ∼20% of the patients from SegTHOR, the model was not
exposed to any slice from this set at any time during training or validation. For
baseline comparison, we also fine-tuned a state-of-the-art pre-trained model [5]
with hyper-parameter, data pre-processing steps, and all other settings identi-
cal to the one used to test our model. The baseline model places Gaussians at
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Fig. 2. (a) Iso-contour plots are shown overlaid on the computed confidence map for
a few different object shapes. For visualization, we set the area outside last contour to
a gray intensity, blue line shows the boundary of the object, and red ‘x’ markers are
the extreme points. We draw attention to how the iso-contour lines flex and bend to
retain the negative curvature characteristic across varying object shapes. (b) and (c)
help explain Algorithm 1, and (d) shows how the CHAOS data was split for reporting
results in section 4.2, where Tr=Train, V=Val, Ts=Test, and numbers (‘65’, ‘25’, etc)
show the %. ‘U-Net GT’ was trained using ground truth segmentation, and ‘U-Net’
was trained using segmentation produced by our model.

the extreme points and was shown to outperform all other methods that em-
ploy cues for segmentation (including GrabCut (GC) [9]). In our experiments,
we initialized GC by setting area outside bounding box extended by extreme
points to background, and extreme points to foreground, however GC did not
produce any meaningful segmentation to warrant further exploration. We also
evaluated combination of the confidence map and extreme points (gaussians) as
two separate input channels. The mean Dice score results for all experiments are
summarized in table 1, organized by testing on each organ.

4.2 Weakly Supervised Segmentation

In order to evaluate the efficacy of our model in producing accurate segmentation
for fully supervised training, we fine-tuned our model on the segmentation data
of a new-to-the-model organ (liver, CHAOS data set [11]). Using a patient-level
25/10/65 split of the data (fig. 2d), we produced segmentation on data collected



from 65% of the patients for which ground truth segmentation was also available.
Next, we trained 2 versions of U-Net [8] in a fully-supervised manner using a
patient-level 65/15/20 split of the data, as shown in fig. 2. Both versions of
the U-Net were identical in experimental settings (hyper-parameters, training,
starting model) and training images used, and differed by using either ground-
truth segmentation (U-Net GT) or the ones generated by our model (U-Net) for
training. The U-Net GT model achieved mean Dice score (%) of 91.70± 13.00,
compared to 90.35± 9.89 by U-Net trained on generated segmentation.

5 Discussion and Conclusion

We evaluated a new approach to incorporate cues from extreme points into neural
network by computing a confidence map that is used during training. This was
enabled by our algorithm for quickly computing distance of points from line
segment. Our approach, when compared with the state-of-the-art baseline under
identical and unbiased conditions resulted in improved mean Dice score across
all four organs in the test set, with closely-matching variance in the Dice scores
across samples. Interestingly, a combination of our confidence map and extreme
points (gaussians) further improved the mean Dice for 2 out 4 organs while
reducing variance. This strongly suggests that confidence map provide superior
guidance to neural networks for segmentation, compared to extreme points alone.

On qualitative evaluation, the segmentation results were found to be con-
sistent. We probed the samples which resulted in lower Dice score compared to
the group mean and observed that these were slices where the organ occupied a
small area within the image. Resizing such instances for input to the network is
associated with two factors: (i) lack of texture in resized image, and (ii) rescal-
ing binary segmentation can introduce non-trivial noise in the loss function.
We posit these factors reduce the quantitative measures of segmentation perfor-
mance. We further evaluated our model’s ability to produce segmentation for
fully-supervised learning. We observed that U-Net trained using segmentation
produced by our model achieves slightly lower mean Dice score than the gold
standard (U-Net GT), but achieves lower variance compared to U-Net GT.

Organ CM (Ours) EP CM+EP (Ours) Best (No Cues)

Aorta 94.00± 2.02 92.80± 1.89 94.41± 1.87 86± 5

Esophagus 89.87± 4.36 88.14± 4.50 89.83± 4.16 67± 4

Heart 95.97± 2.09 95.41± 2.05 96.53± 1.94 90± 1

Trachea 91.87± 4.07 90.05± 3.90 91.24± 4.27 83± 6

Table 1. Mean Dice (mDice) score (%) on SegTHOR data organized by organ type.
CM–Confidence Map, EP–Extreme Points. CM achieves higher mDice compared to
EP. CM+EP inputs CM and EP (gaussians) as separate input channels. Results in the
last column are the best achieved by a fully-supervised model without using any cue.



Our findings suggest that to quickly annotate large data sets, it may suffice
to: 1) Fine-tune a pre-trained model using a fully annotated small proportion of
the data, 2) Use pre-trained model along with extreme points as cue to predict
segmentation on the rest of the unlabeled data, 3) Use the generated labels
to train a fully-supervised algorithm. Such an approach would help reduce the
annotation time and expense drastically and allow more data to be labeled.
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